
Engineering a software tool for gene structure prediction in higher organisms

Gordon Gremme a, Volker Brendel b,c, Michael E. Sparks c, Stefan Kurtz a,*

a Zentrum für Bioinformatik, Universität Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
b Department of Statistics, Iowa State University, Ames, IA 50011-3260, USA

c Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011-3260, USA

Available online 8 November 2005

Abstract

The research area now commonly called ‘bioinformatics’ has brought together biologists, computer scientists, statisticians, and scientists of

many other fields of expertise to work on computational solutions to biological problems. A large number of algorithms and software packages are

freely available for many specific tasks, such as sequence alignment, molecular phylogeny reconstruction, or protein structure determination.

Rapidly changing needs and demands on data handling capacity challenge the application providers to consistently keep pace. In practice, this has

led to many incremental advances and re-writing of code that present the user community with confusing options and a large overhead from non-

standardized implementations that need to be integrated into existing work flows. This situation gives much scope for contributions by software

engineers. In this article, we describe an example of engineering a software tool for a specific bioinformatics task known as spliced alignment. The

problem was motivated by disabling limitations in an original, ad hoc, and yet widely popular implementation by one of the authors. The present

collaboration has led to a robust, highly versatile, and extensible tool (named GenomeThreader) that not only overcomes the limitations of the

earlier implementation but greatly improves space and time requirements.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Computational biology; Genome annotation; Similarity-based gene structure prediction; Intron cutout technique; Incremental updates
1. Introduction

Modern biology research is characterized by the ability to

study questions from a genome-wide perspective. Whereas

only a decade ago a research project would typically focus on a

single gene or pathway, it is now possible to view and evaluate

the same genes and pathways in the context of all the genes of

an organism, mapped onto the chromosomes that constitute the

species’ entire genetic blueprint. Of course, these possibilities

require prior correct identification and annotation of all the

genes, a challenging problem that has not been entirely solved

[7,8]. Whereas obtaining the genetic blueprint, or, more

technically, genomic DNA sequencing and assembly, is a

mostly hands on, experimental process, gene annotation is

largely computational, involving both statistically based

prediction methods and integration of various sources of

experimental and knowledge-based evidence.

This paper illustrates the development of a versatile tool for

gene structure prediction, named GenomeThreader. We

describe the algorithms utilized by GenomeThreader. The
0950-5849/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2005.09.005

* Corresponding author.

E-mail address: kurtz@zbh.uni-hamburg.de (S. Kurtz).
main algorithmic contribution of this paper is the intron cutout

technique, which allows prediction of gene structures

stretching over large regions of a genome or chromosome.

Such gene structures are often present in vertebrate genomes.

The intron cutout technique consists of an efficient filtering step

and a dynamic programming step, and we describe how to

combine them.

Unlike most papers on similar topics written for the

bioinformatics community, we do not stop with the algorithms,

but continue with the description of implementation aspects.

We consider these aspects very important, because only well

engineered software tools can cope with the ever-changing

requirements and fast growing data sizes in molecular biology.

We tried to keep the description of these implementation

aspects generic to allow applications to problems other than

gene structure prediction. Some details and ideas presented in

the implementation sections may be straightforward or even be

folk knowledge for an experienced computer scientist with

focus on efficient implementation of algorithms. Nevertheless,

we think that it is worthwhile to describe them here for the

following reasons: First, it is interesting for a general computer

scientist to see how the application of software engineering

principles leads to robust and versatile software, solving an

important problem in bioinformatics. Second, in the fast

growing and interdisciplinary field of bioinformatics, software
Information and Software Technology 47 (2005) 965–978
www.elsevier.com/locate/infsof

http://www.elsevier.com/locate/infsof


G. Gremme et al. / Information and Software Technology 47 (2005) 965–978966
is often developed by researchers without formal education in

computer science. These researchers are mostly not aware of

certain implementation techniques and software engineering

principles. This paper gives a source for otherwise undocu-

mented techniques and software engineering principles applied

to a particular problem in molecular biology.

The paper is organized as follows: Section 2 gives a brief

introduction to the basic biological concepts needed to

understand the paper. Section 3 introduces the computational

problem addressed by the GenomeThreader software, namely

the spliced alignment problem. Section 4 describes how to

compute optimal spliced alignments. Section 5 introduces the

intron cutout technique, which allows prediction of gene

structures stretching over large regions of a genome of a higher

organism. Section 6 explains how to compute a consensus

spliced alignment from a set of spliced alignments. Section 7 is

devoted to implementation and software engineering aspects.

We describe the data structures implemented in Genome-

Threader, sketch interfaces and test strategies and shortly

describe the software development tools we employed. Some

evaluation and performance results are given in Section 8.

Section 9 closes with a discussion and an outline of future

work.
2. Biological background

It suffices to review a few basic concepts of molecular

biology for the reader not familiar with the subject. For a more

thorough introduction, the reader is referred to textbooks of

molecular biology [2,15].

Chemically, DNA is a polymer composed of four different

types of nucleotides, denoted by A, C, G, and T. In the

computational context of this work, we treat each DNA

molecule as a string over the alphabet {A, C, G, T}. These

strings can be as short as 100 symbols and as long as several
Exon 1

Exon 1

Exo

Nucleu

Cytoplasm

Genomic DNA

Pre-mRNA

mRNA

Transcription

Splicing

Fig. 1. Gene expression (simplified). Mo
million. The long strings represent the chromosomes of a

species, and the entire set of all strings (chromosomes)

comprise the genome of that species. Of note is that most

DNA exists as an antiparallel helix of two complementary

DNA molecules. Here, complementarity is defined by the

consistent pairing of A’s with T’s and C’s with G’s on the

opposing strands, and antiparallel refers to chemical direction-

ality of the molecule. Thus, for example, ACCGTT pairs with

AACGGT.

Genes are certain substrings of the chromosome strings.

Here, we only consider protein-coding genes—parts of the

genome that encode information for proteins, which are

another type of polymer consisting of 20 different amino

acids. The familiar genetic code describes the translation from

the nucleotide alphabet into the amino acid alphabet. The

underlying cellular processes are quite complicated, involving

first a process of transcription, which generates a copy of a

genic portion of genomic DNA as an RNA molecule (pre-

mRNA, yet another polymer, but for our purposes we may

consider it an exact copy of specified parts of the genomic

DNA string). See Fig. 1 for a schematic explanation of the

process. A curious feature of most genes in animals and plants

is that the RNA molecule undergoes a process called splicing

by which certain stretches (called introns) are cut out of the

original molecule and only the remaining parts (exons), in their

original linear order, provide the basis for translation into

protein, the mRNA. The processed RNA can be sampled

experimentally, either as full-length molecules (termed cDNA;

the term results from the fact that, for experimental reasons, the

RNA is reverse transcribed back into the complementary DNA

string) or as fragments (termed ESTs—Expressed Sequence

Tags).

The computational approach to gene finding discussed in

this paper consists of aligning cDNAs and ESTs to genomic

DNA (gDNA, for short) and thereby identifying the exons and
Exon 2 Exon 3

Exon 2 Exon 3

Exon 2n 1 Exon 3

s

RNA transport
and translation

Protein

re details are given in Refs. [2,15].



G. Gremme et al. / Information and Software Technology 47 (2005) 965–978 967
introns of genes. The problem is non-trivial because in practice

the alignments sought are not necessarily of exactly matching

strings. Because of natural variations (termed polymorphisms)

and sequencing errors, matching sequences should tolerate

several percent of single symbol mismatches as well as

differences arising from insertions/deletions (indels). Solutions

to such alignment tasks are of great practical importance, both

for genome projects in the public domain and for projects

within the pharmaceutical and biotechnology industries. The

data provided for input to GenomeThreader software come

from public domain projects. Internationally maintained public

databases such as the database resources of the National Center

for Biotechnology Information (NCBI) [22] or the EMBL

Nucleotide Sequence Database [12] provide access to very

large numbers of DNA, RNA, and protein sequences. For

example, at the time of writing this article, the entire genomes

of human, chimpanzee, mouse, rat, and dog are available for

download, as well as several million EST sequences for human

and mouse, respectively. The genomes of two plants

(Arabidopsis thaliana, a laboratory model organism, and

rice) are also available, and sequencing of the worldwide

most important crop, maize, has begun. The plant EST and

cDNA collections are not as extensive as for human and mouse

for any given species, however, the cumulative numbers for

related species are also in the millions. These sequences can be

used for gene structure annotation provided the alignment

algorithms are robust with respect to sequence divergence

between related genes in the different species.

3. The computational problem

We now formulate the computational problem solved by the

GenomeThreader software. In the simplest case, the input to

GenomeThreader consists of one (typically long) gDNA

sequence (supplied in any one of the most commonly used

sequence file formats) and a set of cDNA/EST sequences

(depending on the application, this could, for example, be a

single, newly derived sequence or a large set consisting of

thousands or even millions of individual sequences (each

uniquely identified in the public databases)). The gDNA

sequence could be several million symbols, whereas each

cDNA/EST sequence would typically be about 500 symbols

long and maximally about 20,000 symbols. It is unknown how

many of the cDNA/EST sequences will match the gDNA

sequence in some location. The alignment problem thus can be

divided into two subproblems: first, identification of the

cDNA/EST sequences and corresponding gDNA locations

that may constitute high-quality matching pairs, and second,

derivation of the optimal alignment (delineating the exons and

introns in the gDNA). In GenomeThreader, the first task is

solved by fast string matching algorithms based on enhanced

suffix arrays [1], with a subsequent chaining phase combining

several consistent matches. The second task involves appli-

cation of classical dynamic programming [3]. The idea is to

take an expressed gene product (a cDNA/EST or a protein) and

perform a ‘backward calculation’ of the biological process

shown in Fig. 1. The goal is to reveal the (previously unknown)
gene structure from which the (known) product was derived.

That is, one aligns the product against the gDNA allowing for

introns. Therefore, this kind of alignment is called spliced

alignment. This problem has been extensively considered over

the last 10 years. Our algorithm is closely related to the

GeneSeqer algorithm [6,20]. Other recent programs with

similar capabilities are GMAP [23], Genomewise [5] BLAT

[13], Spidey [21], and sim4 [10].

Different spliced alignments in the same region of the

gDNA may not be mutually consistent. Inconsistencies of

particular biological interest are different assignments of exons

and introns, which may indicate physiologically significant

alternative splicing. Therefore, a third task solved by

GenomeThreader is the derivation of all possible alternative

transcripts covering a particular gDNA region that are

consistent with some, but not necessarily all cDNA/EST

alignments in that region. This is done by a method described

in Ref. [11].
3.1. Basic notions

We consider sequences over an alphabet S. The length of a

sequence s, denoted by jsj, is the number of symbols in s. s[a] is

the ath symbol of s. If a%b, then s[a.b] is the substring of s

beginning with the ath symbol and ending with the bth symbol.

If aOb, then s[a.b] is the empty sequence. The edit distance

of two sequences s and s 0 is the minimum number of insertions,

deletions, and replacements of single symbols required to

transform s into s 0.
3.2. The spliced alignment problem

We consider the problem of computing an optimal spliced

alignment of a gDNA gZg[1.n] and a cDNA/EST sequence

cZc[1.m], both over the alphabet SZ{A, C, G, T, N}, where

N is the undetermined symbol.

A spliced alignment is characterized by a subset of n exon

states ext, t2[1,n] and n intron states int, t2[1, n]. Each of the

states ext and int describes the status of position t in g. In each

exon state, an output column a

b

" #
for a, b2Sg{–} is

generated. In each intron state, an output column a

,

� �
for

a2S is generated. We use the symbol ‘–’ for denoting

deletions. That is,
K

b

" #
denotes the deletion of symbol b from

sequence g, while a
K

� �
denotes the deletion of symbol a from c.

The symbol ‘.’ stands for a symbol spliced out of the gDNA.

Consider a sequence QZq1,q2,.,qk of intron and exon

states, and let AZ
a1 a2 . ak

b1 b2 . bk

" #
be the corresponding

sequence of column outputs in these states, i.e.
ai

bi

" #
is the

output in state qi. (Q, A) is a spliced alignment of g and c if we

obtain g from a1a2.ak and c from b1b2.bk after deleting all



ACCGTCAAGTT–CG

AGC  . . . . . . TTACG

Fig. 2. A spliced alignment where the sequence of intron and exon states is left

implicit. The gDNA sequence is shown in the upper lines. Each column of the

form
a

,

� �
corresponds to an intron state. All other columns correspond to exon

states. Matching symbols are denoted in the second row with the symbol ‘j’.

Insertions and deletions are shown using the ‘–’ symbol.

G. Gremme et al. / Information and Software Technology 47 (2005) 965–978968
occurrences of the symbols ‘–’ and ‘.’. Fig. 2 shows an artificial

spliced alignment with two exons enclosing one intron.

Because we consider an optimization problem, we assign

weights to each state transition in the state sequence Q and to

each output column in the alignment A. The state transitions are

weighted by a function w as follows:

wðext; extC1Þ Z logðð1KPDg
Þð1KPDðtC1ÞÞÞ

wðint; extC1Þ Z logðPAðtÞð1KPDgÞÞ

wðext; intC1Þ Z logðð1KPDgÞPDðtC1ÞÞ

wðint; intC1Þ Z logð1KPAðtÞÞ

wðext; extÞ Z logðPDgÞ

wðint; extÞ Z logðPAðtÞPDgÞ

for t2[1, nK1] (first four lines) and t2[1, n] (last two lines),

respectively. All other transition weights are set to KN. PDg

denotes the probability of deleting a single symbol in g. See Fig. 3

for a graphical overview of the weight assignments. PD(t) reflects

the probability that t is the first position of a donor site in g and

PA(t) reflects the probability that t is the last position of an acceptor

site in g. The general term for a donor or acceptor site is a splice

site. The terms donor and acceptor site are biologically motivated.

For the discussion here, it suffices to know that a donor site

indicates the start of an intron, and an acceptor site indicates the

end of an intron in the genomic sequence. An intron is completely
ext

int

log(( 1 – P∆

log(1

log(P∆g)

log(PA(t )P∆g)

log(PA(t )(1– P∆g))

log((1 – P∆g)PD(t+

Fig. 3. States and state transitions of a splic
specified by giving the corresponding pair of donor and acceptor

sites. The calculation of the parameters PD(t) and PA(t) follows

Bayesian splice site models (BSSM) described in Refs. [6,18].

Therefore, PD(t) and PA(t) are called BSSM parameters.

While the weight of a state transition depends on the

position t, the weight of an output column is independent of t:

An output column
a

b

" #
generated in an exon state is assigned a

weight w
a

b

" # !
as follows:

w
a

b

" # !
Z

s if a; b2SnfNg;a Z b

m if a; b2SnfNg;asb

n if a; b2S;a Z N or b Z N

d otherwise

8>>>><
>>>>:

s denotes the identity weight, m the mismatch weight, n the

weight for alignment columns involving undetermined

symbols, and d the deletion weight. In an intron state int the

column
g½t	

,

� �
with weight 0 is generated.

The sum of the weights of all state transitions and all output

columns of a spliced alignment (Q, A) is its weight, denoted by

w(Q, A). The spliced alignment problem is to find a spliced

alignment of g and c with maximum weight, denoted by w(g, c).

A spliced alignment (Q, A) of g and c satisfying w(Q, A)Zw(g, c)

is called an optimal spliced alignment.

Table 1 gives an overview of the parameters required to

determine the weight of a spliced alignment.

4. Computing optimal spliced alignments

As with many problems in biological sequence comparison,

the spliced alignment problem can be solved by a dynamic

programming (DP) algorithm. This computes two (mC1)!
g )(1 – PD(t+1)))

– PA(t ))

int+1

ext+1

1))

ed alignment. Adapted from Ref. [20].



Table 1

Parameters determining the weight of a spliced alignment

Parameter Notation Default

Initial exon state probability w(ex1) 0.5

Probability of inserting a gap in

gDNA

PDg 0.03

Identity weight s 2.0

Mismatch weight m K2.0

Weight for alignment positions

involving undetermined symbol N

n 0.0

Weight for deletions d K4.0

Splice site parameter PD(t), PA(t) From BSSM

index j 1 2 3 4 5 6 7 8 9 10 11 12 13

gDNA g A C C G T C A A G T T - C G

EST c A G C . . . . . . T T A C G

index i 1 2 3 4 5 6 7 8

states Q ex1 ex2 ex3 in4 in5 in6 in7 in8 in9 ex10 ex11 ex11 ex12 ex13

out. weights 0 0 0 0 0 0σ  µ σ σ σ δ σ σ

Fig. 4. Adapted from Ref. [20]. Hypothetical alignment of a gDNA gZ
ACCGTCAAGTTCG with an EST sequence cZAGCTTACG. The gDNA

position j is in the range [1,13] and the EST sequence position i is in the range

[1,8]. As one can see from the optimal state sequence Q, positions 4–9 of the

gDNA have been assigned intron status.

G. Gremme et al. / Information and Software Technology 47 (2005) 965–978 969
(nC1)-matrices E and I such that following holds for all i2[0,

m] and j2[0, n]:

† E
j
i is the maximum weight of any spliced alignment of

g[1.j] and c[1.i] such that the state sequence ends with

an exon state.

† I
j
i is the maximum weight of any spliced alignment of

g[1.j] and c[1.i] such that the state sequence ends with

an intron state.

Obviously, wðg; cÞZmaxðEn
m; I

n
mÞ. To simplify the compu-

tation, we introduce an additional exon state ex0 and intron

state in0, and define wðex0; ex1ÞZwðin0; ex1ÞZ logðwðex1ÞÞ and

wðex0; in0ÞZwðin0; in1ÞZ logðwðin1ÞÞZ logð1Kwðex1ÞÞ. Here,

w(ex1) denotes the initial exon state probability. Now each

matrix entry can be computed by the following recurrence:

E
j
i Z max

maxfE
jK1
i CwðexjK1; exjÞ;

I
jK1
i CwðinjK1; exjÞgCw

g½j	

K

� �� �
maxfE

jK1
iK1 CwðexjK1; exjÞ;

I
jK1
iK1 CwðinjK1; exjÞgCw

g½j	

c½i	

" # !

maxfE
j
iK1 Cwðexj; exjÞ;

I
j
iK1 Cwðinj; exjÞgCw

K

c½i	

" # !

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

I
j
i Z

maxfE
jK1
i CwðexjK1; injÞ;

I
jK1
i CwðinjK1; injÞg

for iO0 and jO0. Additionally, E
j
i Z0, for jZ0 or iZ0, I

j
i Z0

for jZ0, and I
j
i ZKN for iZ0. The first row of the I matrix

(case iZ0) is set to KN, because cDNAs/ESTs, theoretically

speaking, do not contain introns. This is also the reason why a

value in matrix I only depends on two other values. Inspection

of the data dependencies in the recurrence shows that each

matrix entry only depends on a constant number of entries in

the previous row or column. Hence, the matrices can be

computed column by column or row by row. Each entry can be

computed in constant time. Hence, both matrices can be
computed in O(mn) time, which also gives the time bound for

determining w(g, c). An optimal spliced alignment is recovered

by tracing back from the entry maxðEn
m; I

n
mÞ to an entry in its

multi-way maximum that yielded it, determining which entry

gave rise to that entry, and so on back to the entry E0
0. This

requires saving backtrace information for each matrix entry,

and leads to an algorithm that takes O(mn) space. The

backtracing procedure can be organized in such a way that a

spliced alignment of g and c is computed in time proportional

to its length.

Fig. 4 shows a (hypothetical) optimal spliced alignment

including output column weights. The same alignment is

shown in Fig. 5 as a path in the superimposed matrices E and I.
5. The intron cutout technique

When predicting the gene structure for genomic sequences

of vertebrates (e.g. human or mouse) or plants one is often

faced with the problem of long introns. Some known introns

consist of several 10,000 or even 100,000 bases (e.g. [2,15]),

and thus the dynamic programming algorithm described in

Section 4 is too slow and requires too much space. On the other

hand, an intron does not contribute to the overall weight of a

spliced alignment. Therefore, we could skip most of the

internal parts of introns in the dynamic programming

algorithm, if we knew the intron locations. While the exons

of a potential gene structure should be highly similar to the

EST sequences derived from this genomic locus, the introns

should be devoid of any but chance matches to the EST

sequences. Thus, the idea is to apply a similarity filter: this first

finds approximate matches between the gDNAs and the ESTs.

Several of these matches are combined into a chain if they are

compatible with each other, i.e. if they could serve as parts of a

spliced alignment. On the gDNA these chains provide

candidates for exons. All stretches of the gDNA not covered

by a chain are considered as potential introns. They are cut out

before applying dynamic programming. See Fig. 6 for a

graphical explanation of this idea. In the backtracing phase of

the dynamic programming algorithm, the previously cut out

parts of the introns are inserted back. This produces a complete

spliced alignment and thus retains the properties of the DP

algorithm, allowing recognition of the exact exon/intron

boundaries. Most important, the cutout technique considerably



E,I

E,I

E,I

E,I

E,I

E,I

E,I

E,I E,I E,I E,I E,I

E,I

E,I

E,I

A C C

A

C

A

T

T

C

G

G

IntronExon Exon

E
ST

 S
eq

ue
nc

e

maximum
A G C .  .  .  .  .  .  T T A C G
A C C G T C A A G T T – C G

weight

Genomic Sequence

G T C A A G T T C G

Fig. 5. An optimal spliced alignment of the sequences gZACCGTCAAGTTCG and cZAGCTTACG represented by a path in the superimposed matrices E and I.

Each node is only represented by showing the symbol E and I at the corresponding coordinate of the DP-matrices. The states of the optimal state sequence are circled.

The optimal path through the matrix starts at E0
0 and ends at En

m. The computed gene structure of the artificial gDNA is shown on top of the matrix.

G. Gremme et al. / Information and Software Technology 47 (2005) 965–978970
reduces the effort for the dynamic programming algorithm.

Note however, that the technique is heuristic: if an exon does

not contain a sufficiently long and well conserved match, it is

cut out, which leads to an incorrect gene structure prediction.

Although the cutout technique is conceptually simple, we are

not aware of any software tools fully employing it for predicting

gene structures. In the following, we first describe how to identify

parts of the gDNA where to possibly apply the intron cutout

technique. The idea is to first efficiently compute matches

between the gDNA and the ESTs, and then to chain these. The

chain suggests regions of the gDNA to cut out.
5.1. Computing matches

We consider maximal approximate matches between the

gDNA g and the EST sequence c. Formally, a maximal

approximate match is a pair of substrings g[ j.r] and c[i.h]

which is left maximal and right maximal. Left maximality

means that jZ1 or iZ1 or g[ jK1]sc[iK1]. Right maximality

means that rZn or hZm or g[rC1]sc[hC1]. We are only

interested in maximal approximate matches of some minimum

length [min with some maximum number of differences dmax.

That is, we require that minðrKjC1; hKiC1ÞR[min and

d%dmax, where d is the edit distance of g[ j.r] and c[i.h]. A
Fig. 6. A graphical explanation of the intron cutout idea.
standard approach to compute these approximate maximal

matches is the seed-and-extend approach. This relies on the

fact that a maximal approximate match contains at least one

maximal exact match of length [min=ðdmax C1Þb c or longer. This

is called an exact seed. Each maximal approximate match can

be derived from an exact seed by extending this to both sides in

sequence g and c. The extension is performed by a dynamic

programming algorithm that allows up to dmax errors. See Ref.

[14] for a description of the technical details. This seed-and-

extend approach is implemented in the program Vmatch (http://

www.vmatch.de/), and we utilize Vmatch for computing

maximal approximate matches.

The basic concept of Vmatch is to preprocess a set of

database sequences (in our case the gDNA) into an

enhanced suffix array, which provides a very powerful

index structure for string matching [1]. This index structure

is stored on file and computed only once. Unlike traditional

hashing methods (which first generate exact matches of

some fixed length k and then extend these to maximal

matches), Vmatch directly computes maximal exact matches.

As a consequence, it is considerably faster than tools

utilizing hashing methods.
5.2. Chaining the matches

To derive a potential exon in the gDNA, usually several

approximate matches have to appear in collinear order.

Therefore, the next step of our similarity filter is to chain the

approximate matches. To clarify this step, we introduce some

new notions. Because a match always refers to the sequences g

and c, we denote it by the left and right boundaries. That is, the

matching substrings g[ j.r] and c[i.h] are denoted by

http://www.vmatch.de/
http://www.vmatch.de/


EST

gDNA
(b)

3

1

2

4

5

6

7

1 3 6

(a)

EST

gDNA

2

1 53 76

4

7

(b)

Fig. 7. Given a set of matches (upper left figure), an optimal global chain of collinear (possibly) overlapping matches (lower left figure) can be computed, e.g. by

computing an optimal path in the graph in (b) (in which not all edges are shown). The overlapping part of match 3 and match 6 is circled.

G. Gremme et al. / Information and Software Technology 47 (2005) 965–978 971
([ j.r], [i.h]). For any pair of matches fZ([ j.r], [i.h]) and

f 0Z([ j 0.r 0], [i 0.h 0]) we define a function gap( f, f 0)Zmax{0,

j 0KrK1, i 0KhK1} and a binary relation / as follows: f/f 0

if and only if j!j 0, i!i 0, r!r 0, h!h 0, and gap( f, f 0)%m. m is

the (user defined) maximum gap width. If f/f 0, then we say

that f precedes f 0. Note that the definition of / allows for

overlaps between matches both in g and c. We want to account

for these and define the overlap of f and f 0 by

ovlðf ; f 0Þ :Z 2ðmaxð0; rKj0 C1ÞCmaxð0; hKi0 C1ÞÞ

For a given set M of matches, a chain is a sequence f1, f2,.,fq
such that fa2M for a2[1, q] and fa/faC1 for a2[1, qK1]. f1 is

called start fragment and fq is called end fragment. To obtain the

score for a chain, we score matches: Each maximal approximate

match fZ([ j.r], [i.h]) is assigned a positive score. This is

defined on the basis of an optimal alignment of c[i.h] and

g[ j.r] without any spliced out symbols and exon/intron states.

In this alignment each matching pair of nucleotides scores 2,

each mismatch scores —1, and each insertion and deletion

scores —2. A simple calculation shows that score( f)ZrKjC
hKiC2K3d, where d is the edit distance of the match.

The score of a chain C is

scoreðCÞ :Z
Xq

aZ1

scoreðfaÞK
XqK1

aZ1

ovlðfa; faC1Þ

The chaining problem is to find a chain of maximum score,

called an optimal global chain. A direct solution to this

problem is to construct a weighted directed acyclic graph GZ
(V, E), the match graph. The set V of vertices consists of all

matches in M. The set E of edges is characterized as follows:

There is an edge f/f 0 with weight score( f 0)Kovl( f, f 0) if and

only if f/f 0; see Fig. 7(b). An optimal chain of matches

corresponds to a path of maximum score in the match graph.

Because the graph is acyclic, such a path can be computed as

follows: Let scoremax( f 0) be defined as the maximum score of

all chains ending with f 0. scoremax( f 0) can be expressed by the

recurrence:
score maxðf 0Þ Z scoreðf 0ÞCmaxfscore maxðf ÞKovlðf ; f 0Þ j f

/ f 0g

max{scoremax( f 0) j f 02M} gives the maximum score of any

chain, and reconstructing a chain of maximum score is an easy

task. A dynamic programming algorithm based on Eq. (1) takes

O(jVjCjEj) time. Because (jVjCjEj)2O(jMj2), computing an

optimal global chain takes O(jMj2) time. There is a method to

compute global chains with overlaps in O(jMj logjMj) time

(see [17]). However, this method utilizes a different scoring

scheme for matches and overlaps.

We modified this approach to find all biologically mean-

ingful chains, and not only the one with maximum score. For

each fragment f2M we keep track of the start fragment of an

optimal chain ending with f. We divide all fragments into

equivalence classes according to their corresponding start

fragments. That is, two fragments belong to the same

equivalence class, if and only if their corresponding optimal

chain share the same start fragment. For every equivalence

class, which contains a chain covering a minimum user defined

percentage of the EST (default is 50%), we keep the chain with

the highest coverage. Thus we avoid reporting multiple chains

which differ only slightly. This modification allows identifi-

cation of chains matching at different loci in the genome

(resulting from paralogous genes).

5.3. The cutout step

For each of the stored global chains for a given EST and

gDNA, we consider the regions of the gDNA covered by the

matches of the chain. Each such region is extended to the right

and to the left by some user-defined number of positions. This is

to make sure that the splice sites of adjacent introns are kept for

the dynamic programming step. Extended regions that overlap or

are very close together are merged. Each region obtained in this

way is a DP region, because it defines a substring of the gDNA to

which the dynamic programming algorithm of Section 4 is

applied. Technically, we create an artificial gDNA, the spliced

gDNA, by concatenating the gDNA substrings corresponding to

DP regions, in the order of the DP regions. For each border



G. Gremme et al. / Information and Software Technology 47 (2005) 965–978972
between concatenated substrings we keep a length value, defined

as the distance between the substrings in the original gDNA.

Given the spliced gDNA, the dynamic programming

algorithm can be used in exactly the same manner as without

the intron cutout technique. The only part which needs to be

modified is the backtracking procedure. Whenever it crosses a

border between different DP regions in the spliced gDNA, an

intron with the length of the border is included into the spliced

alignment.

6. Computing consensus spliced alignments

Spliced alignments derived from ESTs often do not cover full

genes, because ESTs are usually not longer than 500 nucleotides,

whereas genes can be much longer. To resolve the complete gene

structure, one has to join more than one compatible spliced

alignment occurring in the same region of the gDNA. The result

of joining such spliced alignments may not lead to a single gene

structure. This is often due to events of alternative splicing, i.e.

exons or parts of exons are combined in different ways. As a

consequence, simple merging of spliced alignments is not

possible. Often one has to compute many different consensus

spliced alignments. This is typically implemented as a post-

processing step after all the spliced alignments have been

computed. Fig. 8 shows an example of several spliced alignments

occurring in the same region of the gDNA.

To calculate consensus spliced alignments, we use the

method of Ref. [11]. While the original description is

operational, involving the computation of set sizes, we give a

more compact description of this method directly describing

how certain sets are constructed.

Suppose we are given a gDNA gZg[1.n], a set of EST

sequences, and a set of spliced alignments SA. Recall that a

spliced alignment always begins and ends with an exon. Since,

we consider more than one spliced alignment here, each spliced

alignment in SA refers to some substring g[ j.r] of the gDNA.

Therefore, in this section, a spliced alignment is denoted by a

pair ( j, r) of positions in g. Of course, for each spliced

alignment ( j, r) we store which positions in the interval [ j, r]

are in an exon and which are in an intron.

Two spliced alignments ( j, r), ( j 0, r 0)2SA overlap if j%r 0

and j 0%r. Consider the overlap graph (V, E) with the node set

VZSA and the edge set E defined by (sa, sa 0)2E if and only if
1

3
4

5
6

2

Fig. 8. Adapted from Ref. [11]. An example of consensus spliced alignments. The ni

into two consensus spliced alignments. The circled shortened exon suggests that th
sa and sa 0 overlap. We assume that this overlap graph is fully

connected, i.e. there is at least one path from each node to each

other node. Given an arbitrary set of spliced alignments, we can

easily divide this into disjoint subsets such that the overlap

graph for the subset is fully connected. Hence, this assumption

is not a restriction of generality.

Two spliced alignments ( j, r), ( j 0, r 0)2SA are compatible, if

they overlap and for all i2[ j, r]h[ j 0, r 0], i is an exon position

in ( j, r) if and only if i is an exon position in ( j 0, r 0). In other

words, spliced alignments are compatible, if the overlapping

regions are consistent with respect to exon and intron

assignments. Note that compatibility is not transitive; see

Fig. 9 for an example.

The consensus spliced alignment problem of SA is to find a

minimal collection {SA1,.,SAk} of subsets of SA satisfying:

(1) SA1g.gSAkZSA

(2) For each p2[1, k] and each sa, sa 02SAp sa and sa 0 do not

overlap or sa and sa 0 are compatible.

(3) For each p2[1, k], SAp is maximal with respect to

compatibility, i.e. for each sa2SAp and sa 02SA\SAp, sa

and sa 0 are not compatible.

We say that each SAp represents a consensus spliced

alignment or a splice form. A spliced alignment ( j, r) contains a

spliced alignment ( j 0, r 0) if ( j, r) and ( j 0, r 0) are compatible and

j%j 0%r 0%r. Note that each spliced alignment contains itself.

The spliced alignment problem is solved by iteratively

constructing the consensus spliced alignments, with the largest

one beeing constructed first. For each spliced alignment ( j, r)

we define L( j, r) as a maximal subset of SA satisfying the

following conditions:

† L( j, r) contains ( j, r),

† for each pair ( j 0, r 0), ( j 00, r 00)2L( j, r), ( j 0, r 0) and ( j 00, r 00) do

not overlap or are compatible, and

† j 0!j and r 0!r for each ( j 0, r 0)2L( j, r)\{( j, r)}.

R( j, r) is defined in an analogous way, with the third

condition replaced by

† j 0Oj and r 0Or for each ( j 0, r 0)2L( j, r)\{( j, r)}.
7
8

9

Consensus 2 
Consensus 1 

ne spliced alignments shown in the upper part of the figure have been processed

is gene is alternatively spliced.



sa

sa ′

sa ″

0 100

130

140100

100

120

120

12080 160 200

15040

4030 60

60

Fig. 9. Adapted from Ref. [11]. Three spliced alignments. sa and sa 0 are

compatible, as well as sa 0 and sa 00. sa and sa 00 are not compatible since the

second intron of sa 00 overlaps with the last exon of sa. Thus the compatibility

relation is not transitive.

G. Gremme et al. / Information and Software Technology 47 (2005) 965–978 973
The algorithm constructs a sequence of sets U0, U1, U2,.,

Uk such that Up s=0 for p2[0, kK1] and Uk Z =0, and a solution

SA1, SA2,.,SAk to the consensus spliced alignment problem as

follows:

† U0ZSA,

† SAiZL(sai)gR(sai) where sai2UiK1 satisfies jL(sai)

gR(sai)jRjL(sa 0)gR(sa 0)j for all sa 02UiK1,

† UiZUiK1\SAi.

Since SAi s=0 for all iR1, the algorithm clearly terminates.

It remains to show how to compute the L-sets and R-sets. To do

so, we define

leftðj; rÞ Zfðj0; r 0Þ2SAjj0! j; r 0!r;

ðj0; r 0Þ and ðj; rÞ are comparibleg

rightðj; rÞ Zfðj0; r 0Þ2SAjj0O j; r 0Or;

ðj0; r 0Þ and ðj; rÞ are comparibleg

Then L(sa) and R(sa) can be computed by the following

recurrences:

LðsaÞ Z
CðsaÞ if leftðsaÞ Z =0

Lðsa0ÞgCðsaÞ if leftðsaÞs =0

(

where sa 02left(sa) satisfies

Lðsa0ÞgCðsaÞjR jLðsa00ÞgCðsaÞj for all sa00 2leftðsaÞ

RðsaÞ Z
CðsaÞ if rightðsaÞ Z =0

Rðsa0ÞgCðsaÞ if rightðsaÞs =0

(

where sa 02right(sa) satisfies

jRðsa0ÞgCðsaÞjR jRðsa00ÞgCðsaÞj for all sa00 2rightðsaÞ

These recurrences can easily be implemented in a dynamic

programming scheme tabulating jL(sa)j and jR(sa)j for each

spliced alignment sa2SA. With each sa one keeps track of

which sa 0 gave rise to the maximum value in the corresponding

recurrence. For each sa2SA one also stores C(sa). A backtrace

step then allows to reconstruct the splice forms by joining the

appropriate sets C(sa).

Consider the running time of this algorithm. For each pair

of spliced alignments, we can decide in constant time if they

overlap. By sorting the spliced alignments according to their
start position we can also decide in O(l) time if the

corresponding overlap graph is fully connected, where lZ
jSAj. For two spliced alignments sa, sa 02SA assume that the

start position of sa is smaller or equal to the start position of

sa 0. Then we check compatibility by starting at the first

overlapping exon and simultaneously scanning the exons

from left to right. For each exon pair we decide the

consistency of exon/intron assignment in constant time. Pairs

of two internal exons have to be identical. Other pairs of

exons only have to have identical left or identical right

boundaries. Hence, compatibility can be determined in time

proportional to the number of exons in each pair of spliced

alignments. Let h be the maximal number of exons in all

spliced alignments. Then we can compute an l!l table

storing the compatibility relation using O(l2h) time. Given

this table, we can also decide in constant time if one spliced

alignment is contained in another. The dominating step in

the described algorithm is the computation of SA1. We have

to compute L(sa) for l spliced alignments. For each spliced

alignment we have to iterate over all O(l) elements in

left(sa) and join it with C(sa). Joining also requires O(l)

time. Hence, the total running time is O(l3Cl2h).

7. Implementation

GenomeThreader is a command line tool with many

different options. For a complete description of these options

and examples of its application, we refer to the manual at http://

www.genomethreader.org/. GenomeThreader has a modular

structure. Each module implements a certain phase of the data

flow, as depicted in Fig. 10. The interface between the different

modules are kept small. They exchange information via a small

number of different datatypes, which are described in this

section. Some of these datatypes are also used in other software

tools, and are therefore more general than required for

GenomeThreader.

7.1. Multiple sequences

A datatype for handling sequences is central to all

software for sequence analysis. Because GenomeThreader

handles many sequences at the same time, we use a datatype

multiseq for sets of sequences. A set {S1,.,Sk} of kR1

sequences is stored in a consecutive memory area of length

kK1C
Pk
jZ1

jSjj with a separator symbol between each

adjacent pair of sequences. If necessary, we also store the

reverse complement of every sequence Si in another

consecutive memory area of the same size and in the

same order as the original sequences. Because the datatype

multiseq handles sequences over alphabets of up to 254

symbols, we use one byte for each sequence character. An

additional array stores the positions of the separator

symbols. This array allows to map a position in the

concatenated string to a position in sequence Si using

O(log2 k) time by a binary search. Besides the sequence

content, the datatype multiseq also stores the description of

http://www.genomethreader.org/
http://www.genomethreader.org/


enhanced
suffix array
of gDNA

chaining

spliced alignment
compute consensus

output

(incremental updates)
intermediate output

spliced align.
incl. scores

spliced align.
incl. scores collection

alignment
spliced

collection
alignment

spliced

collection
alignment

spliced

.

.

.

similarity

filter

matching

approximate

maximal
matches

intron cutout

spliced alignment DP

optimal
global chain

spliced
gDNA

backtrace
table

backtrace with

intron insertion

alignment trimming

and evaluation

consensus
SAs

unprocessed
spliced align.

Gthconsensus

EST
database
(multiseq)

Fig. 10. Overview of the GenomeThreader-phases.

G. Gremme et al. / Information and Software Technology 47 (2005) 965–978974
each sequence in one large string. The description gives

basic information about the origin of the sequence and

references to sequence databases. For preparing the final

output, an additional array allows accession of each

sequence description in constant time, given a sequence

number.
7.2. Enhanced suffix arrays

An enhanced suffix array consists of several tables, which

encode a tree structure storing all suffixes of a given sequence
in linear space. Different algorithms require different tables

from the enhanced suffix array, and so the tables are stored in

separate files and mapped in memory on demand. Due to its

simple structure, an enhanced suffix array is thus represented

by a record of pointers which refer to the corresponding table,

if this is mapped. To minimize the risk of accessing corrupted

tables, we perform several simple consistency checks when

mapping a table.

The construction of enhanced suffix arrays mainly consists

of sorting the suffixes in lexicographic order to obtain the suffix

array. In a first sorting phase, we use the counting sort



G. Gremme et al. / Information and Software Technology 47 (2005) 965–978 975
algorithm [9] to lexicographically sort all suffixes by their

prefix of length d, where d%logs n, n is the total length of all

sequences, and sZjSj is the alphabet size. This step requires

O(nCsd)ZO(n) time and n bytes in addition to the array

storing the start positions of the suffixes (the suffix array). In

the second step, we adapt the string sorting algorithm of Ref.

[4] to independently sort sets of suffixes with the same prefix of

length d. This algorithm is a variant of the quicksort-algorithm,

which apart from the space for the suffix array, only requires

space for a stack to store intervals left to be sorted.

7.3. Chaining

We collect all approximate matches between the EST and

the genomic sequence in an array. The matches are sorted

according to their start position in the genomic sequence. Then

for two matches f and f 0, the relation f/f 0 implies that f occurs

to the left of f 0 in the sorted array. Hence, we scan the array of

matches from left to right, evaluate Eq. (1) for each match f 0,

and keep a reference to the match f which maximizes Eq. (1).

We call f the previous match. Furthermore, for each match we

keep a reference to the start fragment of its chain and the

coverage of the chain up to this match. This allows us to divide

all end fragments (these are the only one we have to consider)

into equivalence classes easily. For each equivalence class,

which contains a chain with sufficient coverage, we can

retrieve the chain with the highest coverage by following the

reference to the previous match, until we reach the first match

of a chain. Each chain is represented as an array of references

to the matches of a chain in the order they occur in the chain.

7.4. Dynamic programming

For a given spliced genomic sequence without cut out

regions, we first calculate the BSSM parameters PD(t) and PA(t),

for t2[1, n], see Section 3.2. We use an array of length mC1 of

pairs of floating point numbers for storing a column of matrix E

and matrix I. For each entry E
j
i and I

j
i , we have to store the cases

of the corresponding recurrence that gave rise to the maximum

value. There are six different cases for E
j
i and two different

cases for I
j
i to store. Because we only have to store one case at a

time, we need dlog2(6)Clog2(2)eZ4 bits for each index pair (i, j)

2[0, n]![0, m]. Hence, a backtrace table B of 4$(mC1)$(nC1)

bits suffices. Let B[ j][i] denote the 4-bit block storing the

backtrace information for E
j
i an I

j
i . After computing the weights

column by column and filling table B, a backtracing procedure

recovers the spliced alignment encoded in B. The backtrace

procedure starts at B[m][n]. In each step, it jumps to a value in

the previous row and/or previous column, until it reaches B[0]

[0]. Each step generates an exon or intron state and an output

column, making up the spliced alignment. In Section 7.5, we

describe how to efficiently represent the spliced alignment.

7.5. Representation of spliced alignments

As a result of the spliced alignment phase, we obtain a

collection of spliced alignments for different EST sequences
and the same gDNA. We efficiently represent a spliced

alignment by references to the substrings of the EST and the

gDNA being aligned, and by a sequence of multi edit

operations. An edit operation represents an output column of

a spliced alignment, ignoring the symbols. This is possible

because we access the columns of a spliced alignment in

sequential order, and thus, the symbols are implicitly

represented by the two substring references. As there are five

different kinds of output columns, there are five edit operations:

match, mismatch, insertion, deletion, and intron. Large

stretches of a spliced alignment consist of consecutive columns

of the same kind of output columns. Thus, with the exception of

deletion columns, we aggregate each such sequence of output

columns of the same kind into a corresponding multi edit

operation. Each multi edit operation has an iteration flag,

telling how many output columns it represents. Technically, a

multi edit operation is represented by a 16-bit integer. The first

two bits store a flag identifying the edit operation. The

remaining 14 bits store the iteration flag. We use the same

identification flag for deletion and intron. A deletion always

has iteration flag 0, while an intron has iteration flag larger than

0. A sequence of l output columns of the same kind is thus

represented by l=214
� �

multi edit operations. As a result, a

spliced alignment usually does not require more than 2 kb. This

allows for feasible storage of hundreds of thousands of spliced

alignments in main memory, as often required when processing

large data sets.

Each spliced alignment is processed in several different

ways, each requiring a sequential scan over aligned sequences

and the sequence of multi edit operations:

† The spliced alignment has to be shortened on both sides, to

get rid of deletion columns resulting from the symmetric

extension of regions stemming from matches of a chain

projected on the gDNA, see Section 5.3.

† From the shortened spliced alignment the exact exon/intron

boundaries are determined.

† Additionally, score values are computed: the shortened

spliced alignment is assigned an overall score, which is

different from the optimal weight computed in the dynamic

programming algorithm. Each exon is assigned an exon

score. For the donor site and the acceptor site of each intron,

probability values and scores are determined.

To simplify the implementation of these evaluation steps we

have implemented the spliced alignment as an abstract datatype

with a few generic functions to decode the edit operations in

forward or backward order, and apply appropriate functions to

the encoded output column.

All spliced alignments exceeding some user defined

minimum score are collected into a balanced binary search

tree. The spliced alignments are ordered by their start position

in the gDNA. Large collections of ESTs often contain the same

ESTs, which lead to identical spliced alignments. When

inserting a spliced alignment into the search tree, such a

situation is detected, and the identical spliced alignment is not

stored in the tree. Once all ESTs are processed, the spliced



G. Gremme et al. / Information and Software Technology 47 (2005) 965–978976
alignments are output or they are processed into a consensus

spliced alignment.

7.6. Output of spliced alignments

GenomeThreader provides two output formats. The first

format is text-based, intended to be read by users. It shows

spliced alignments as in Fig. 2, with additional information

about alignment scores, exon and intron boundaries, splice site

scores, and probabilities, see http://www.genomethreader.org/

for an example.

Alternatively, output is in XML conforming to a specifica-

tion implemented in the RELAX NG schema language,

available at http://www.genomethreader.org/GenomeThrea-

der.rng.txt. The benefit of an XML-based approach is that

any program intercepting GenomeThreader output can expect a

standards conforming, monomorphic data structure that can be

validated using a tool such as jing (http://www.thaiopensource.

com/relaxng/jing.html). Given a static, universally accepted

schema standard, such otherwise brittle tools should never

break, greatly diminishing code maintenance overhead.

We have implemented an assortment of software to utilize

the XML output, including a Perl script to parse the data into a

MySQL database of our design (GthDB, which is optimized for

warehousing and querying high volumes of spliced alignment

information in a multitude of ways), and a Python program for

converting results to the GFF format used by GMOD’s Generic

Genome Browser (http://www.gmod.org/) [19]. These are

distributed both with the GenomeThreader package and

independently at the GenomeThreader web site.

7.7. Incremental updates

We have also defined an XML output schema for the spliced

alignment data structure that allows GenomeThreader to dump

alignments held in main memory into a string representation.

This output can be validated against the provided schema

specification, facilitating safe incremental updates of spliced

alignment results.

There is an extra program Gthconsensus, which imports

these XML data and runs the consensus spliced alignment

algorithm, as described in Section 6. Because the phase

generating consensus spliced alignments requires much less

resources than the phase calculating the spliced alignments,

one can incrementally compute the spliced alignments for a

growing collection of ESTs, store these on file, and quickly

recompute the consensus for the entire set of spliced

alignments. This is of great importance because in practice,

genome sequences are often already stable while additional

EST and full-length cDNA collections are being generated.

Thus, the GenomeThreader design allows quick cycles of

incorporation of new data.

7.8. Software development tools

GenomeThreader is implemented in C using an object-

oriented style. The source code is single threaded and it is
written in such a way that it can be compiled without any

changes on 32-bit and 64-bit platforms.

We used the GNU C compiler with high levels of

optimization. splint (http://www.splint.org/) is regularly run

to statically check the source code. We use gdb for debugging

and valgrind (http://valgrind.org/) to track memory errors and

leaks. The code is portable for different Unix platforms. In fact,

we have compiled and tested it on eight different Unix

platforms.

7.9. Test strategy

Systematic and automatic testing plays an important role in

the entire software development process for GenomeThreader.

Test data is abundant, as there are many genomes for which to

predict gene structures, and many ESTs which can help with

this. To check for the consistency of the data structures, we

systematically implemented assertions in the program code.

The assertions help to catch unexpected cases in the code very

early in the development phase. Although the assertions

slightly slow the program down, we leave them in production

versions of GenomeThreader. Besides the code level testing,

we employ output level testing, supported by autotest, a GNU-

tool. In particular, we compare the results produced by older

versions of it, or to the output of GeneSeqer [20], a program

implementing the same spliced alignment algorithm, but with a

different similarity filter and without the intron cutout

technique.

8. Preliminary evaluation and performance benchmarks

The GenomeThreader program is now being distributed and

is being used in several projects, including areas of application

for which the earlier GeneSeqer program proved largely

successful. For example, GenomeThreader is currently used at

the Munich Information Center for Protein Sequences (MIPS,

http://mips.gsf.de/) in their annotation pipeline (personal

communication G. Haberer, 2005). Detailed performance

evaluation of GenomeThreader for different applications is

beyond the scope of this paper. Our discussion here is limited

to a representative application of plant genome annotation and

comparison with GeneSeqer, which was previously shown to

be the most sensitive spliced alignment program for plant

genome annotation [6].

We examined the first 600,000 nucleotides of the current

assembly of rice chromosome 10 by aligning a set of more than

32,000 full-length rice cDNAs (of unknown chromosomal

origin) using GenomeThreader and GeneSeqer. We selected a

set of 52 full-length rice cDNAs that were aligned over at least

90% of their length from this output and re-aligned these

sequences using GeneSeqer, GenomeThreader (without intron

cutout), and GenomeThreader (with intron cutout). While a

detailed analysis of how various combinations of parameters

impact the results of the programs is also outside the scope of

this report, we based comparisons on a set of options for

GenomeThreader (without intron cutout) that closely match

GeneSeqer settings and gave roughly equal numbers of spliced

http://www.genomethreader.org/
http://www.genomethreader.org/GenomeThreader.rng.txt
http://www.genomethreader.org/GenomeThreader.rng.txt
http://www.thaiopensource.com/relaxng/jing.html
http://www.thaiopensource.com/relaxng/jing.html
http://www.gmod.org/
http://www.splint.org/
http://valgrind.org/
http://mips.gsf.de/


G. Gremme et al. / Information and Software Technology 47 (2005) 965–978 977
alignments. Notably, GenomeThreader showed about fivefold

speed-up compared to GeneSeqer under these conditions.

In terms of evaluating the comparative quality of various

cDNA alignments, the three algorithms tested produced

identical alignments in most cases. As expected, high-quality

alignments are invariably consistent between GenomeThreader

and GenerSeqer. Differences occur for lower quality align-

ments. Here, quality refers to the degree of sequence similarity

between genomic DNA and cDNA. Because of natural

sequence variation as well as unavoidable sequencing errors,

less than perfect matching is not unusual, and this presents the

more challenging alignment task. We identified four types of

relations between alignments made using the algorithms: the

alignments are identical; the alignments cover the same region,

but are reported on opposite strands of the genomic DNA; the

alignments map to the same locus, but differ in predicted gene

structures (this includes the particular case of missing small

exons); the same cDNA is mapped to different genomic regions

by the programs. Examples are displayed at http://www.

genomethreader.org/. Notably, the examined chromosomal

region contained one locus for which a high-quality Genome-

Threader cDNA alignment contained 15 exons and spanned

about 17,000 nucleotides, the large span resulting mostly from

two long introns. GeneSeqer could only partially resolve this

gene structure because its length is beyond the default maximal

gene length specified in the program in order to restrict

memory use.

9. Discussion

This paper describes a new technique that permits gene

structure predictions in the presence of long introns. The

technique is a building block of a new software tool

GenomeThreader, which was developed with adherence to

strict software engineering principles. GenomeThreader

implements several datatypes in a reusable manner.

Compared to its predecessor GeneSeqer, it is considerably

faster, easier to maintain, and extensible. Besides the

description of the most important algorithms, we have

focused on implementation aspects, which are often

neglected in the development of bioinformatics software.

With about two years of development time, GenomeThrea-

der has become a robust software tool. However, there are

still several aspects of the software to improve. (i) We want

to improve the running time of the chaining phase from

O(k2) to O(k log k), where k is the number of approximate

matches to chain. It might be possible to adapt

the O(k log k) method described in Ref. [17], where a

different scoring function is used. (ii) The main bottleneck

of GenomeThreader is still the computation of spliced

alignments. We are planning to implement a linear space

spliced alignment algorithm utilizing techniques similar to

Ref. [16]. Furthermore, we hope to improve the speed of the

spliced alignment algorithm by careful code level optimiz-

ation. (iii) GenomeThreader provides many different options

to influence the different phases of the computation and thus

often trade running time and space requirement for quality
of gene structure predictions. Careful selection of default

parameters depending on the specific organism and the

quality of the ESTs is very important to balance the resource

requirements and quality of the gene structure predictions.

GenomeThreader is available free of charge for non-

commercial research institutions. For details see http://www.

genomethreader.org/.
References

[1] M.I. Abouelhoda, S. Kurtz, E. Ohlebusch, Replacing suffix trees with

enhanced suffix arrays, Journal of Discrete Algorithms 2 (2004) 53–86.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter,

Molecular Biology of the Cell, Garland Science, 2002.

[3] R. Bellman, Dynamic Programming, Princeton University Press, 1957.

[4] J. Bentley, R. Sedgewick, Fast Algorithms for Sorting and Searching

Strings, in: Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms, 1997, pp. 360–369.

[5] E. Birney, M. Clamp, R. Durbin, GeneWise and Genomewise, Genome

Research 14 (5) (2004) 988–995.

[6] V. Brendel, L. Xing, W. Zhu, Gene structure prediction from consensus

spliced alignment of multiple ESTs matching the same genomic locus,

Bioinformatics 20 (7) (2004) 1157–1169.

[7] International Human Genome Sequencing Consortium, Finishing the

euchromatic sequence of the human genome, Nature 431 (7011) (2004)

931–945.

[8] The ENCODE Project Consortium, The ENCODE (ENCyclopedia Of

DNA Elements) Project, Science 306 (5696) (2004) 636–640.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms,

MIT Press, Cambridge, MA, 1990.

[10] L. Florea, G. Hartzell, Z. Zhang, G.M. Rubin, W. Miller, A computer

program for aligning a cDNA sequence with a genomic DNA sequence,

Genome Research 8 (1998) 967–974.

[11] B.J. Haas, A.L. Delcher, S.M. Mount, J.R. Wortman, R.K. Smith Jr.,

L.I. Hannick, R. Maiti, C.M. Ronning, D.B. Rusch, C.D. Town,

S.L. Salzberg, O. White, Improving the Arabidopsis genome annotation

using maximal transcript alignment assemblies, Nucleic Acids Research

31 (19) (2003) 5654–5666.

[12] C. Kanz, P. Aldebert, N. Althorpe, W. Baker, A. Baldwin, K. Bates,

P. Browne, A. van den Broek, M. Castro, G. Cochrane, K. Duggan,

R. Eberhardt, N. Faruque, J. Gamble, F.G. Diez, N. Harte, T. Kulikova,

Q. Lin, V. Lombard, R. Lopez, R. Mancuso, M. McHale, F. Nardone,

V. Silventoinen, S. Sobhany, P. Stoehr, M.A. Tuli, K. Tzouvara,

R. Vaughan, D. Wu, W Zhu, R. Apweiler, The EMBL nucleotide

sequence database, Nucleic Acids Research 33 (Database Issue) (2005)

29–33.

[13] W.J. Kent, BLAT—The BLAST-Like Alignment Tool, Genome

Research 12 (4) (2002) 656–664.

[14] S. Kurtz, J.V. Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye,

R. Giegerich, REPuter: the manifold applications of repeat analysis on a

genomic scale, Nucleic Acids Research 29 (22) (2001) 4633–4642.

[15] B. Lewin, Genes VIII, Prentice Hall, 2004.

[16] D.R. Powell, L. Allison, I. Dix, A versatile divide and conquer technique

for optimal string alignment, Information Processing Letters 70 (1999)

127–139.

[17] T. Shibuya, I. Kurochkin, Match Chaining Algorithms for cDNA

Mapping, in: Proceedings of the Third Workshop on Algorithms in

Bioinformatics (WABI 2003), number 2812 in Lecture Notes in

Bioinformatics, Springer, 2003, pp. 462–475.

[18] M.E. Sparks, V. Brendel, Incorporation of splice site probability models

for non-canonical introns improves gene structure prediction in plants.

Bioinformatics, 21 (Suppl. 3), iii1–iii11 (2005).

[19] L.D. Stein, C. Mungall, S. Shu, M. Caudy, M. Mangone, A. Day,

E. Nickerson, J.E. Stajich, T.W. Harris, A. Arva, S. Lewis, The generic

genome browser: a building block for a model organism system database,

Genome Research 12 (10) (2002) 1599–1610.

http://www.genomethreader.org/
http://www.genomethreader.org/
http://www.genomethreader.org/
http://www.genomethreader.org/


G. Gremme et al. / Information and Software Technology 47 (2005) 965–978978
[20] J. Usuka, W. Zhu, V. Brendel, Optimal spliced alignment of homologous

cDNA to a genomic DNA template, Bioinformatics 16 (3) (2000) 203–211.

[21] S.J. Wheelan, D.M. Church, M. Ostell, Spidey: a tool for mRNAto-

genomic alignments, Genome Research 11 (11) (2001) 1952–1957.

[22] D.L. Wheeler, T. Barrett, D.A. Benson, S.H. Bryant, K. Canese,

D.M. Church, M. DiCuccio, R. Edgar, S. Federhen, W. Helmberg,

D.L. Kenton, O. Khovayko, D.J. Lipman, T.L. Madden, D.R. Maglott,
J. Ostell, J.U. Pontius, K.D. Pruitt, G.D. Schuler, L.M. Schriml,

E. Sequeira, S.T. Sherry, K. Sirotkin, G. Starchenko, T.O. Suzek,

R. Tatusov, T.A. Tatusova, L. Wagner, E. Yaschenko, Database resources

of the National Center for Biotechnology Information, Nucleic Acids

Research 33 (Database Issue) (2005) 39–45.

[23] T.D. Wu, K. Watanabe, GMAP: a genomic mapping and alignment program

for mRNA and EST sequences, Bioinformatics 21 (9) (2005) 1859–1875.


	Engineering a software tool for gene structure prediction in higher organisms
	Introduction
	Biological background
	The computational problem
	Basic notions
	The spliced alignment problem

	Computing optimal spliced alignments
	The intron cutout technique
	Computing matches
	Chaining the matches
	The cutout step

	Computing consensus spliced alignments
	Implementation
	Multiple sequences
	Enhanced suffix arrays
	Chaining
	Dynamic programming
	Representation of spliced alignments
	Output of spliced alignments
	Incremental updates
	Software development tools
	Test strategy

	Preliminary evaluation and performance benchmarks
	Discussion
	References


